
CLEFNET: Recurrent Autoencoders with Dynamic Time Warping for
Near-Lossless Music Compression and Minimal-Latency Transmission

Vignav Ramesh∗

Saratoga High School
20300 Herriman Avenue

Saratoga, CA 95070
rvignav@gmail.com
Corresponding author

Mason Wang∗

Saratoga High School
20300 Herriman Avenue

Saratoga, CA 95070
masonwang025@gmail.com

Abstract

The onset of coronavirus disease 2019 (COVID-19), an
infectious disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has sparked un-
precedented change. Due to the public health guidelines
imposed during the COVID-19 pandemic, there is no
longer sufficient street traffic for remaining buskers to
generate sufficient revenue, leading a majority of street
musicians to pursue remote music production. However,
real-time music production is notoriously difficult due
to the excessively high latencies that current video call
platforms such as Zoom and Google Meet harbor. In this
paper, we propose an architecture for a platform with
end-to-end, near-lossless audio transmission tailored
specifically to online joint music production, called
Latent Space. We discuss the usage of a recurrent
autoencoder with sequence-aware encoding (RAES) and
a 1D convolutional layer for audio compression, which
we dub CLEFNET, as well as propose a new evaluation
metric for naive autoencoders (AEs), MSE-DTW loss,
which combines the traditional mean square error (MSE)
loss function with dynamic time warping (DTW) to
prevent an increase in loss when the target sequence
predicted by the AE is strictly a temporal variation of the
source sequence. Moreover, we detail the logistics of a
live system implementation which uses the Web Audio
API to extract raw audio samples in real-time to feed into
our client-side model before relaying the traffic using
peer-to-peer WebRTC technology. The Latent Space plat-
form can be accessed at https://latent-space.tech,
and the code and data can be found under the MIT
License at https://github.com/rvignav/ClefNet.†

Keywords: music production, latent space, live
system, recurrent autoencoder, dynamic time warping,
compression

1 Introduction

The onset of coronavirus disease 2019 (COVID-19), an
infectious disease caused by severe acute respiratory

∗Equal contribution
†The provided code and prototype reflect a deprecated ver-

sion of the proposed architecture; a more complete set of fea-
tures will be added in the near future.

syndrome coronavirus 2 (SARS-CoV-2), has sparked
unprecedented change [1-3]. In January 2020, the World
Health Organization (WHO) declared the COVID-19
outbreak a global health emergency, and in March 2020,
the outbreak was declared a global pandemic. The
virus has continued to spread on a global scale with
unparalleled rapidity, reaching a total of over 2.5 million
deaths as of February 2021 [4, 5]. Stay home orders,
quarantine rules, lockdowns, and other public health
restrictions have been implemented in order to curb
this growth, but these measures have substantial social
effects [6-8].

Music is an integral part of human culture, taking a wide
variety of forms and evoking a unique human spirit in
its creation [9]. Of the approximately 30 million musi-
cians in the U.S., more than 40,000 are street musicians,
or buskers [10]. Due to the public health guidelines im-
posed during the COVID-19 pandemic, however, there is
no longer sufficient street traffic for remaining buskers to
generate sufficient revenue, leading a majority of street
musicians to pursue remote music production.

Real-time remote music production is notoriously diffi-
cult. Without being able to meet in person, musicians are
forced to connect via video call platforms such as Zoom,
Google Meet, and Jitsi Meet. However, these platforms
all harbor excessive latencies, or delays of over-the-
network transfers of large audio payloads: while humans
can easily recognize latencies of 10ms and more, Zoom’s
latency is 135ms, Google Meet’s latency is 100ms, and
Jitsi Meet’s latency is 500ms. Musician synchronization
is vital to music recording and production, yet audio
codecs that video calling platforms currently use are not
optimized for remote music production. For instance,
MP3 audio compression algorithms utilized by various
video-calling platforms use carefully-tuned psychoacous-
tic models to make inferences about which components
of a given audio stream are most perceived by a human
listener; while these perceptual coding methods exhibit
quite impressive compression results within the domain
of human speech, they are ineffective and even detrimen-
tal when applied in situations for which they were not
designed, e.g. music-related tasks [11].

1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202103.0360.v1
http://creativecommons.org/licenses/by/4.0/

Thus, there is significant value in creating an automated
tool for real-time transmission of music with minimal la-
tency. A flexible platform that can support a wide range
of video-calling capabilities useful for real-time remote
music production is critically necessary. In this paper,
we present the prototype of an online video-calling plat-
form that enables minimal-latency audio transfer. The
proposed pipeline involves three components: audio
compression, transfer, and reconstruction.

There has been progress in music compression and, more
generally, audio compression research. Traditional meth-
ods of music compression typically use deterministic
algorithms, which rely on identifying features and pat-
terns in the frequency domain [12]. Such algorithms
include the MP3 compression algorithm described in
[11] and similar (often lossy) pipelines.

However, the use of deep learning for music-related ap-
plications, such as the tasks of music generation and mu-
sical style transfer, has risen in recent years [13-15]. The
motivation for using deep learning (and more generally
machine learning techniques) for music compression
is its generality; unlike deterministic models, such as
grammar-based or rule-based music generation systems,
a machine learning-based system can be agnostic, as it
learns a representation of music from an arbitrary corpus
of audio samples and can then extend to a variety of
other genres and styles [16].

For instance, Roche, Hueber, Limier, and Gilin proposed
a set of non-linear unsupervised dimensionality reduc-
tion techniques to compress a music dataset into a low-
dimensional representation which can be used in turn
for the synthesis of new sounds [17]. Shallow autoen-
coders, deep autoencoders (DAEs), recurrent autoen-
coders (with Long ShortTerm Memory cells – LSTM-
AEs) and variational autoencoders (VAEs) with principal
component analysis (PCA) for representing the high-
resolution short-term magnitude spectrum of a large and
dense dataset of music notes into a lower-dimensional
vector were presented and evaluated on the publicly avail-
able multi-instrument and multi-pitch database NSynth.
Roche et. al.’s experiments show that DAEs and LSTM-
AEs lead to comparatively low music reconstruction
error.

Grady et al. investigated the use of a time-domain AE for
music compression and genre classification [11]. Com-
pared to the frequency-domain AEs described in [17],
learning on a time-domain signal saves space too as
the spectral domain of an audio signal is sparse. Thus,
Grady et al.’s research centers around the degree of com-
pression (which, in the context of our work, is directly
proportional to the latency of audio transfer) rather than
the accuracy of reconstruction. Their implemented time-
domain AE, with root mean square error (RMSE) as the
loss function, successfully captured the basic rhythm
from music files and compressed audio, but the recon-
structed music sample contained large amounts of white

noise due to the lack of a smoothing component in the
loss function.

Roberts et al. proposed MusicVAE, a hierarchical latent
vector model for learning long-term structure in music
[18]. The MusicVAE model follows the general VAE
architecture but introduces a novel hierarchical decoder,
which is demonstrated to produce a substantially better
performance on long sequences. A two-layer bidirec-
tional LSTM network as the encoder, paired with a novel
hierarchical recurrent neural network (RNN) as the de-
coder, obtains 0.919 reconstruction accuracy for 16-bar
melodies.

Ramani et al. proposed a framework for audio style
transfer, in which audio compression is an intermediate
step, using a single convolutional autoencoder trained
on spectrograms of speech signals and a single style
signal [19]. The signal is preprocessed by applying
the Short Time Fourier Transform (STFT) on the raw
input audio to generate an audio spectrogram that is
passed through the transformation network to generate
the stylized spectrogram. The Griffin-Lim algorithm is
used to convert the stylized spectrogram to the required
stylized audio.

For the problem of learning high-level controls over the
global structure of generated sequences in the context of
symbolic music generation with complex language mod-
els, Choi et al. proposed the Transformer Autoencoder,
which aggregates encodings of the input data across time
to obtain a global representation of style from a given
performance [20]. This latent representation can then be
combined with other temporally distributed embeddings
to generate new music of similar style with greater con-
trol over the separate aspects of performance style and
melody. Choi et al.’s method achieves improvements in
terms of log-likelihood and mean listening scores when
compared to prior state-of-the-art methods.

However, these methods have not been applied to the
task of minimal-latency audio transfer, nor have they
leveraged the web to develop an online video-calling
tool.

1.1 Contributions

The main contributions of this paper can be summarized
as follows:

1. We propose an architecture for a platform with
end-to-end, near-lossless audio transmission tai-
lored specifically for online joint music production,
called Latent Space.

2. We discuss the usage of a recurrent autoencoder
with sequence-aware encoding (RAES) and a 1D
convolutional layer for audio compression, which
we dub CLEFNET.

3. We propose a new evaluation metric for naive au-
toencoders (AEs), MSE-DTW loss, which com-
bines the traditional mean square error (MSE) loss

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

https://doi.org/10.20944/preprints202103.0360.v1

function with dynamic time warping (DTW) to pre-
vent an increase in loss when the target sequence
predicted by the AE is strictly a temporal variation
of the source sequence.

4. We detail the logistics of a live system implemen-
tation which uses the Web Audio API to extract
raw audio samples in real-time to feed into our
client-side model before relaying the traffic using
peer-to-peer WebRTC technology.

2 Method

2.1 Background

Encoder-Decoder Architectures. An encoder-
decoder model is a type of neural network architecture
trained to reconstruct its input. The encoder learns a new,
lower-dimensional representation of the input, called the
latent space or the embedding, from which the decoder
then aims to reconstruct an output as similar as possible
to the original input. Encoder-decoder models, along
with self-supervised models [21], are popular in that they
learn a compact representation of an input domain that
can be used for a variety of tasks.

Autoencoders are a class of encoder-decoder architec-
tures, first introduced in [22], that unsupervisedly learn
efficient data encodings. As defined in [23], the problem
is to learn some encoder A : Rn → Rp and decoder
B : Rp → Rn, usually implemented as independent
neural networks in practice, that satisfy

arg minA,B E[∆(x, B ◦A(x))], (1)

where E is the expectation over the distribution of x,
and ∆ is the reconstruction loss function [24].

Recurrent autoencoders, or RAEs, map time series to a
latent representation, enabling efficient, large scale un-
supervised learning on temporal sequences [25]. Our
model architecture utilizes an RAE, exhibiting the tem-
poral dynamic behavior of recurrent neural networks
(RNNs) and thereby increasing reconstruction accuracy
as previous audio samples can be accessed and utilized
for current inference.

Learning Musical Representations. Music data is
typically represented in high-dimensional spaces, allow-
ing for an extremely high number of possible sequences.
However, only a fraction of these possibilities are likely
for real music. This indicates an opportunity to repre-
sent musical sequences in a lower-dimensional space.
Encoder-decoder models can learn the fundamental char-
acteristics of a given training dataset and thus exclude
the unrealistic, incoherent sequences.

Autoencoders, as previously discussed, are capable of
learning a low-dimensional representation and reproduc-
ing their high-dimensional inputs. Thus, we utilize the
latent space as an effective compression technique to
reduce audio payloads without reducing audio quality.

In order to learn the best mapping to most effectively
use the latent space, there are two primary goals in terms
of desirable properties of a latent space: realism and
smoothness.

The goal of realism is to ensure the latent space corre-
sponds to the likely points. In other words, mapping a
sampled point in the latent space to the original high-
dimensional space should result in a likely point in the
context of music sequences [26].

The goal of smoothness is to ensure that sampled nearby
points in a latent space have similar qualities to one
another. That is, two nearby points in a latent space
should map to nearby points in the output space [27].

2.2 Model Logistics

Preprocessing. Our training data consisted of 1,486
two-minute music excerpts in WAV format [28]. How-
ever, raw WAV files are not of suitable format to be
fed directly into our AE architecture; we must first pre-
process the training data in order to convert the audio
samples into a machine-conducive format. We first use
TensorFlow’s audio_ops library to decode each WAV
file into an array of samples that can be processed and
batched by the AE [29]. The arrays were separated by
channel (left and right - stereo sound). The decoded
samples represent the amplitude of the audio at each
timestep, and experimental efforts proved that this data
format was hard for the AE to learn; thus, we applied
the Discrete Fourier Transform (DFT) to each channel
as to decompose the audio signals into components that
were more conducive to the AE training process. The
DFT is an approximation of the continuous Fourier trans-
form for the case of discrete functions [30, 31]. Given
a sequence xn, the DFT generates a sequence Xk of
complex numbers that represent the amplitude and phase
of the sinusoidal components of the input signal. It can
be represented mathematically as follows:

X(ωk) =

N−1∑
n=0

x(tn)e−iωktn , k = 0, 1, ..., N − 1, (2)

where T is the sampling interval of the signal, ωk = 2πk
NT ,

and tn = nT .

Architecture. One of the primary concerns regarding
our model architecture was making sure that our use of
an autoencoder to compress the audio was fast enough
to decrease latency. That is, we need to ensure that the
extra time required to both compress and decompress
the audio samples would not negate its benefits. For this
reason, we decided to keep the model small and simple,
where modifications had minimal impact on runtime.

We utilized an implementation of a RAES and a 1D
convolutional layer.

Susik proposed a recurrent autoencoder (RAE) archi-
tecture with sequence-aware encoding, employing a 1D
convolutional layer to improve its performance in terms

3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

https://doi.org/10.20944/preprints202103.0360.v1

of model training time. Details of this implementation
can be found in [32]. We provide a brief explanation
here. The vanilla RAE (Figure 1) generates an output
sequence Y for an input sequence X . X = Y in order
for the autoencoder to learn the semantic meaning of
our training data. The given fixed-sized context variable
C, or the latent space, is then decoded by the decoder.
The proposed RAES (Figure 2) instead has the context
C interpreted as the transformed sequence C ′, and this
not only speeds up training but also, more importantly,
adds sequential meaning to the context.

The limitation of RAES is that the size of the context
must be a multiple of the input sequence length, but this
is solved by an RAES with a 1D convolutional layer
(RAESC) (Figure 3), which adds a 1D convolutional
layer and max-pooling layer before the decoder. In
essence, this addition allows the number of output chan-
nels (filters or feature detectors) to be controlled [32].
Although further pooling and recurrent layers could be
added to the architecture, we chose a simplified variant
to minimize the model’s overhead.

Figure 1: A generic recurrent autoencoder (RAE) archi-
tecture [32].

Figure 2: A recurrent autoencoder with sequence-aware
encoding (RAES) [32].

Figure 3: A recurrent autoencoder with sequence-aware
encoding and 1D convolutional layer (RAESC) [32].

4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

https://doi.org/10.20944/preprints202103.0360.v1

Minimizing Reconstruction Loss. A critical metric
with which autoencoders are evaluated is reconstruc-
tion loss (our model is trained using a custom variant
of the MSE loss function). The problem of signal com-
pression can be divided into three sub-problems: lossy
compression, lossless compression, and near-lossless
compression. Lossy compression algorithms compress
structured data (in the context of this paper, audio files)
in order to reduce file size by eliminating data [33]. Any
data deemed expendable by the compression algorithm
is removed from the file, thereby allowing for compres-
sion but decreasing audio quality in the process. While
lossy compression algorithms are popular in the imaging
domain (slight decreases in image resolution are often
not noticeable), the necessity of high audio quality for
remote music production makes lossy compression al-
gorithms unviable. In contrast, lossless compression
involves no loss of information; losslessly compressed
data can be reconstructed exactly into the original data
[34]. However, with lossless compression techniques,
compression rates are extremely low as maintaining per-
fect accuracy of audio reconstruction is, past a certain
rate of compression, intractable due to the innumerable
amount of subtle aural features in audio files.

Thus, to increase compression rates and cater to the nu-
anced format of audio files, an ideal autoencoder would
achieve near-lossless compression. Near-lossless com-
pression provides quantitative guarantees regarding the
type and amount of distortion applied to the source file,
which assures that the extracted parameters of interest
will only be affected within a bounded range of error
[35]. These techniques significantly increase compres-
sion rates over lossless compression, thereby decreasing
bandwidth usage during audio transfer, while maintain-
ing audio integrity with respect to postprocessing opera-
tions.

We also conceptualize a variant of MSE loss, called
“MSE-DTW loss,” that incorporates DTW [36]. Music
can be represented as a linearly composed stream of
units (notes, strophes, bars, etc.), where each unit corre-
sponds to a different timestep; thus, if the units of the
reconstructed sequence closely or exactly match those
of the input sequence, but the reconstructed sequence
exhibits temporal differences (i.e. the source and re-
constructed sequences differ by a few milliseconds in
start and end times, the reconstructed sequence is at a
slightly lower or higher tempo than the source sequence,
etc.), the model should not be heavily penalized as it
would be with MSE loss; the target sequence can be
temporally transformed to match the source sequence as
a postprocessing operation after reconstruction, so the
model should only “focus” on generating latent musical
representations that are aurally, not necessarily tempo-
rally, accurate. DTW solves this problem; DTW is an
algorithm that measures the similarity between two tem-
poral sequences, or time series, that have varied speeds.
DTW calculates an optimal batch between source and
target sequences via certain restrictions, which include:

• There must be at least one match between each
unit in the source sequence and a unit in the target
sequence

• The first unit of each sequence must match
• The last unit of each sequence must match
• The mapping of the units of the source sequence

to those of the target sequence must monotonically
increase, i.e. if j > i are units of the source se-
quence, then there must not be two units l > k in
the target sequence such that i corresponds to l and
j corresponds to k

The sequences are “warped,” or transformed, in the time
dimension to determine a measure of their similarity in-
dependent of temporal variations. Thus, the proposed
method ensures that, as long as the reconstructed se-
quence is some temporal modification of the source se-
quence, MSE-DTW loss remains low.

3 Live System Considerations

Our live system implementation uses the Web Audio
API to extract raw audio samples in real-time to feed
into our model. After compressing the samples through
a client-side model, the packets are then transmitted us-
ing the WebRTC real-time communications framework,
allowing for end-to-end, minimal-latency transmission.

3.1 Sampling Audio

In order for our model to compress a caller’s microphone
audio, we need a fast way of extracting low-level audio,
but most audio interfaces on the web only support either
abstract, high-level stream objects or deal with audio that
is already recorded. Furthermore, we want to process
the audio on a separate thread in order to allow other
code to run on the main thread. We achieve this using
the Web Audio API’s audio worklets.

Behind all our audio processing is the AudioContext
interface, a Web Audio API interface. Inside an au-
dio context, WebAudio API handles audio operations,
which are performed with audio nodes. These audio
nodes are linked together to form an audio-processing
graph, where several sources of audio are supported
within a single context [37]. This graph and context
are represented by the AudioContext interface, which
controls the creation and processing of the AudioNodes
(audio-processing modules that make up the graph) [38].

Most importantly, the AudioContext object provides ac-
cess to an audio worklet to execute scripts off of the
main thread. We use the audio worklet to define a cus-
tom audio node written in JavaScript. Audio worklet
nodes implement the Worker interface, a lightweight
version of the Web Workers API [39], and allow us to
handle low-level parts of the rendering pipeline [40].
The AudioWorklet interface allows us to execute audio
processing scripts on a separate thread to provide low
latency audio processing [41].

5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

https://doi.org/10.20944/preprints202103.0360.v1

We define custom AudioNodes in the AudioWorklet
with the AudioWorkletNode, and each of these is em-
bedded into an audio graph and passes messages to the
AudioWorkletProcessor, which represents the audio pro-
cessing code [42].

Finally, we connect our custom-defined audio-
processing module to two buffers, following the structure
of the deprecated ScriptProcessorNode (Figure 4). One
of the buffers contains the input audio data, while the
other contains the output audio data. An event is sent
to our AudioWorkletNode each time the input buffer
contains new data and the event handler terminates once
the output buffer is filled with data [43].

Figure 4: An audio worklet node, following the struc-
ture of the depicted ScriptProcessorNode, processes au-
dio samples on a separate thread in real-time [43].

The standard sampling rate of 44.1 kHz, or 44,100 sam-
ples per second, best satisfies our prototype’s needs. The
Nyquist-Shannon sampling theorem states that the maxi-
mum frequency that can be represented at any sampling
rate is only half the sampling rate [44]. Thus, a sam-
ple rate of 44.1 kHz can represent frequencies up to
22.05 kHz, and humans can hear frequencies between
20 Hz and 20 kHz. Given this range and the fact that
44.1 kHz is the standard for most consumer audio, larger
sample rates (e.g., 48 kHz, 96kHz) will not provide any
noticeable benefit and will instead only increase audio
payloads.

In essence, we define our custom audio node inside
our audio worklet, which is inside an audio context,
to process audio at a low-level and in real-time on a
separate thread.

3.2 Client-Side Model

For minimal latency, the model must reside on the client-
side, running directly in the browser. Trained models
should be saved and imported onto the client-side model.
TensorFlow.js is a machine learning framework that can
run models using JavaScript fully on the browser [45].

3.3 Transmitting Packets

Figure 5: This MDN diagram depicts the discussed
exchanges between two peers when establishing peer-to-
peer connection [49].

The speed at which packets are transmitted over a net-
work is very important in terms of latency. We use peer-
to-peer communications with WebRTC (Web Real-Time
Communications) to create real-time connections and es-
tablish data channels. WebRTC utilizes plugin-free APIs
available in both desktop and mobile browsers and its
technologies are implemented as an open web standard.
The primary benefit of peer-to-peer communications is
that connections are created directly between two hosts
without using intermediary servers, thereby playing a
crucial role in minimizing latency [46].

Prior to establishing connections between hosts, we ac-
cess cameras and microphones with JavaScript through
the navigator.mediaDevices object. More specifi-
cally, the function getUserMedia() returns a promise
which resolves to the mediaStreams we use in our video
calls [47].

In order for browser-based peer-to-peer communications
to succeed, the two browsers must know how to locate
one another, bypass firewall protections, and bidirection-
ally transmit multimedia communications in real-time.
Each host makes a request for their public-facing IP
address to STUN (Session Traversal Utilities for NAT)
servers, allowing the callers to locate one another.

Once the peers are connected to the same signaling data
channel, which are created after successful NAT traver-
sal, session negotiation and establishment occurs using
SIP (Session Initiation Protocol) and SDP (Session De-
scription Protocol). The initiating peer sends an offer
and waits for any receiver connected to the same channel
to answer.

Once answered, Interactive Connectivity Establishment
(ICE) candidates are shared to represent a combination

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

https://doi.org/10.20944/preprints202103.0360.v1

of IP address, port, and transport protocol to be used,
and the initiating peer generates a set of ICE candidates.
Once negotiation occurs and the optimal ICE candidates
are chosen, the session between the peers will be estab-
lished and active. A fallback TURN (Traversal Using
Relays around NAT) server is able to relay traffic if the
peer-to-peer connection fails [48].

Now that the session is active, data streams
and data channel endpoints are created by each
pair for the data to be bidirectionally transmit-
ted. We create an RTCDataChannel on our existing
RTCPeerConnection to send the video stream and the
compressed audio which is structured as binary data.
Again, because of the nature of peer-to-peer communi-
cations, the overhead for relaying traffic is low as the
connection is made directly between two browsers with-
out the use of external servers.

4 Conclusion

In this paper, we propose an architecture for an online
video-calling platform with end-to-end, near-lossless au-
dio transmission designed for remote music production.
We discuss the application of RAES architectures to au-
dio compression and also propose a custom variant of
MSE loss, MSE-DTW loss, that utilizes the technique of
dynamic time warping to prevent increases in reconstruc-
tion loss based on solely temporal variations between the
source and target sequences. Finally, we detail the logis-
tics of a live system implementation based on the Web
Audio API and peer-to-peer WebRTC technology. With
the proposed architecture, we pave the way towards end-
to-end remote music production for musicians affected
by the COVID-19 pandemic.

Acknowledgment

The authors would like to thank Mathew Wang for his
contributions to the development of the Latent Space
web application.

References
1. Yan, Qingsen, et al. “COVID-19 Chest CT Image

Segmentation – A Deep Convolutional Neural Net-
work Solution.” ArXiv:2004.10987 [Cs, Eess], Apr.
2020. arXiv.org.

2. Sutton, Jack, et al. “Homogeneous and Hetero-
geneous Propagation of COVID-19 from Super-
Spreading to Super-Isolation.” ArXiv:2102.13016
[q-Bio], Feb. 2021. arXiv.org.

3. Bassolas, Aleix, et al. “Optimising the Mitigation
of Epidemic Spreading through Targeted Adop-
tion of Contact Tracing Apps.” ArXiv:2102.13013
[Physics], Feb. 2021. arXiv.org.

4. WHO Coronavirus Disease (COVID-19) Dash-
board. Accessed 25 Dec. 2020.

5. “Coronavirus Disease 2019 (COVID-19) - Symp-
toms and Causes.” Mayo Clinic. Accessed 25 Dec.
2020.

6. Imperial College COVID-19 Response Team, et
al. “Estimating the Effects of Non-Pharmaceutical
Interventions on COVID-19 in Europe.” Nature, vol.
584, no. 7820, Aug. 2020, pp. 257–61. DOI.org
(Crossref).

7. Cowling, Benjamin J., et al. “Impact Assess-
ment of Non-Pharmaceutical Interventions against
Coronavirus Disease 2019 and Influenza in Hong
Kong: An Observational Study.” The Lancet Public
Health, vol. 5, no. 5, May 2020, pp. e279–88.
www.thelancet.com.

8. Peak, Corey M., et al. “Comparing Nonpharmaceu-
tical Interventions for Containing Emerging Epi-
demics.” Proceedings of the National Academy of
Sciences, vol. 114, no. 15, Apr. 2017, pp. 4023–28.
www.pnas.org.

9. Dhariwal, Prafulla, et al. “Jukebox: A Generative
Model for Music.” ArXiv:2005.00341 [Cs, Eess,
Stat], Apr. 2020. arXiv.org.

10. “How Many Official Street Performers (Musicians,
Buskers Etc..) Are in the World, and in the Main
Cities NY, London, Paris Etc.” Wonder. Accessed
9 Mar. 2021.

11. Atreya, Anand R., and D. O’Shea. Novel Lossy
Compression Algorithms with Stacked Autoen-
coders. 2009.

12. “Introduction.” Deep Autoencoders for Music Com-
pression and Genre Classification. Accessed 9 Mar.
2021.

13. “MuseNet.” OpenAI, 25 Apr. 2019.
14. “Magenta.” Magenta TensorFlow. Accessed 9 Mar.

2021.
15. Huang, Allen, and Raymond Wu. “Deep Learn-

ing for Music.” ArXiv:1606.04930 [Cs], June 2016.
arXiv.org.

16. Briot, Jean-Pierre, et al. “Deep Learning
Techniques for Music Generation – A Survey.”
ArXiv:1709.01620 [Cs], Aug. 2019. arXiv.org.

17. Roche, Fanny, et al. “Autoencoders for Mu-
sic Sound Modeling: A Comparison of Linear,
Shallow, Deep, Recurrent and Variational Mod-
els.” ArXiv:1806.04096 [Cs, Eess], May 2019.
arXiv.org.

18. Roberts, Adam, et al. “A Hierarchical Latent Vector
Model for Learning Long-Term Structure in Mu-
sic.” ArXiv:1803.05428 [Cs, Eess, Stat], Nov. 2019.
arXiv.org.

19. Ramani, Dhruv, et al. “Autoencoder Based Archi-
tecture For Fast & Real Time Audio Style Trans-
fer.” ArXiv:1812.07159 [Cs, Eess, Stat], Dec. 2018.
arXiv.org.

20. Choi, Kristy, et al. “Encoding Musical Style with
Transformer Autoencoders.” ArXiv:1912.05537
[Cs, Eess, Stat], June 2020. arXiv.org.

7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

https://doi.org/10.20944/preprints202103.0360.v1

21. Liu, Xiao, et al. “Self-Supervised Learning: Gener-
ative or Contrastive.” ArXiv:2006.08218 [Cs, Stat],
July 2020. arXiv.org.

22. Press, The MIT. Parallel Distributed Processing,
Volume 1 | The MIT Press. Accessed 9 Mar. 2021.

23. Baldi, Pierre. “Autoencoders, Unsupervised Learn-
ing, and Deep Architectures.” Proceedings of ICML
Workshop on Unsupervised and Transfer Learn-
ing, JMLR Workshop and Conference Proceedings,
2012, pp. 37–49. proceedings.mlr.press.

24. Bank, Dor, et al. “Autoencoders.”
ArXiv:2003.05991 [Cs, Stat], Mar. 2020.
arXiv.org.

25. Fabius, Otto, and Joost R. van Amersfoort. “Varia-
tional Recurrent Auto-Encoders.” ArXiv:1412.6581
[Cs, Stat], June 2015. arXiv.org.

26. Roberts, Adam, et al., editors. Learning Latent
Representations of Music to Generate Interactive
Musical Palettes. 2018. Google Research.

27. “MusicVAE: Creating a Palette for Musical Scores
with Machine Learning.” Magenta. Accessed 9 Mar.
2021.

28. Ángel Faraldo. Beatport EDM Key Dataset. Zen-
odo, 21 Dec. 2017. Zenodo.

29. Sherman, Wezley. “Using TensorFlow Autoen-
coders with Music.” Medium, 20 Sept. 2018.

30. Fessler, J. The Discrete Fourier Transform. 2004.
31. “Anand | Discrete Fourier Transform | Fast Fourier

Transform.” Scribd. Accessed 9 Mar. 2021.
32. Susik, Robert. “Recurrent Autoencoder with

Sequence-Aware Encoding.” ArXiv:2009.07349
[Cs, Stat], Jan. 2021. arXiv.org.

33. The Official CHFI Study Guide (Exam 312-49). El-
sevier, 2007. DOI.org (Crossref).

34. Introduction to Data Compression. Elsevier, 2018.
DOI.org (Crossref).

35. Handbook of Image and Video Processing. Elsevier,
2005. DOI.org (Crossref).

36. Olsen, Niels Lundtorp, et al. “Simultaneous Infer-
ence for Misaligned Multivariate Functional Data.”
ArXiv:1606.03295 [Stat], Dec. 2017. arXiv.org.

37. Web Audio API - Web APIs | MDN. Accessed 9 Mar.
2021.

38. AudioContext - Web APIs | MDN. Accessed 9 Mar.
2021.

39. Worker - Web APIs | MDN. Accessed 9 Mar. 2021.
40. Worklet - Web APIs | MDN. Accessed 9 Mar. 2021
41. AudioWorklet - Web APIs | MDN. Accessed 9 Mar.

2021.
42. AudioWorkletNode - Web APIs | MDN. Accessed 9

Mar. 2021.
43. ScriptProcessorNode - Web APIs | MDN. Accessed

9 Mar. 2021.
44. Por, Emiel, et al. “Nyquist–Shannon Sampling

Theorem.” AOT, 2019.

45. Ma, Yun, et al. “Moving Deep Learning
into Web Browser: How Far Can We Go?”
ArXiv:1901.09388 [Cs], Mar. 2019. arXiv.org.

46. Peer-to-Peer Communications with WebRTC - De-
veloper Guides | MDN. Accessed 9 Mar. 2021.

47. “Getting Started with Media Devices.” WebRTC.
Accessed 9 Mar. 2021.

48. Sredojev, B., et al. “WebRTC Technology
Overview and Signaling Solution Design and Im-
plementation.” 2015 38th International Convention
on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2015,
pp. 1006–09. IEEE Xplore.

49. WebRTC Connectivity - Web APIs | MDN. Accessed
9 Mar. 2021.

8

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021 doi:10.20944/preprints202103.0360.v1

https://doi.org/10.20944/preprints202103.0360.v1

